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A procedure for determining the sensitivities of the eigenvalues and
eigenvectors of damped vibratory systems with distinct eigenvalues is presented.
The eigenpair derivatives of the structural and mechanical damped systems can
be obtained consistently by solving algebraic equations with a symmetric
coe�cient matrix whose order is (n� 1)6(n� 1), where n is the number of
co-ordinates. The algorithm of the method is very simple and compact.
Furthermore, the method can ®nd the exact solutions. As an example of a
structural system to verify the proposed method and its possibilities in the case
of the proportionally damped system, the ®nite element model of a cantilever
plate is considered, and also a 7-DOF half-car model as a mechanical system in
the case of a non-proportionally damped system. The design parameter of the
cantilever plate is its thickness, and the design parameter of the car model is a
spring. One of the remarkable characteristics of the proposed method is that its
numerical stability is established.

# 1999 Academic Press

1. INTRODUCTION

The dynamic responses of the structural or mechanical systems can be
completely identi®ed by obtaining the natural frequencies and mode shapes of
the systems. Variations in system parameters lead to changes in these dynamic
characteristics and hence in responses. The derivatives of the eigenpairs are
useful in design trend studies and for gaining insight into the behavior of
physical systems. Using these eigenpair derivatives in large systems can reduce
remarkably the cost of reanalyzes. The derivatives of the mode shapes with
respect to design parameters are particularly useful in certain analysis and design
applications: approximating a new vibration mode shape due to a perturbation
in a design parameter, determining the effect of design changes on the dynamic
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behavior of systems [1], and tailoring mode shapes to minimize displacements at
certain points on a system [2]. In contrast to computing eigenvalue derivatives
where preferred methods exist, there are a number of different methods for
calculating mode shape derivatives. The different methods seek to overcome the
practical dif®culty of solving a singular matrix equation.
Methods for calculating mode shape derivatives include the ®nite-difference

method [3±5], the iterative method [6±9], the modal method [10±18], the
modi®ed modal method [19, 20], Nelson's method [21] and Lee and Jung's
method [22, 23]. The ®nite-difference method uses a difference formula to
approximate the derivative numerically, which requires calculating the
eigenvector at a nominal and at least one perturbed design point. This method is
sensitive to round off and truncation errors associated with the step size used.
The modal method approximates the mode shape derivatives as a linear
combination of mode shapes. This method can be computationally expensive if a
large number of modes are needed to represent accurately the mode shape
derivative. The modi®ed modal method was developed to reduce the number of
modes needed to represent the derivative of mode shapes. Nelson's method is an
exact analytical method for calculating mode shape derivatives. This method
only requires the knowledge of the eigenvector to be differentiated and is
recommended as an ef®cient solver for calculating the mode shape derivative
[18]. However, this method is lengthy and clumsy for programming and is
restricted to the eigenvalue problem with only distinct natural frequencies.
Nelson's method is extended to the eigenvalue problem with multiple natural
frequencies by Dailey [24], however, this method is lengthy and complicated as
well. Lee and Jung's method developed recently is an exact analytical method for
calculating mode shape derivatives. Furthermore, it is very ef®cient and simple.
For a thorough review of the research in sensitivity methods for ®nite-
dimensional structural problems, the reader may refer to the excellent survey
paper by Haftka and Adelman [25].
A number of the prescribed methods can be applied to the damped system;

Pomazal and Snyder [26] extended the theory to the complex eigenvalue problem
to analyze the effects of adding springs and dampers to viscously damped
systems. Hallquist [27] proposed a method for determining the effects of mass
modi®cation in viscously damped systems. Recently Zimoch [28] has presented
the sensitivity analysis method for determining the dynamic characteristics of
mechanical systems to variations in the parameters. The method is applied to
conservative as well as non-conservative systems. However, it may be restricted
to mechanical systems (lumped systems) with only distinct natural frequencies,
and is dif®cult to apply to systems with multiple natural frequencies.
The proposed method can ®nd the eigenvalue and eigenvector derivatives of

the structural and mechanical damped system by solving the algebraic equations
with a symmetric coef®cient matrix added as a side condition; the proposed
algorithm can be applied consistently to the structural and lumped mechanical
systems. The algebraic equation may be ef®ciently solved by the LDLT

decomposition method [29]. If the derivatives of the stiffness, mass and damping
matrices can be found analytically, the proposed method can ®nd the exact
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eigenpair derivatives. Also the proposed method can be extended to the
eigenvalue problem with multiple eigenvalues (refer to Part II).
The second section of this paper presents the sensitivity analysis for ®nding

eigenvalue and eigenvector derivatives of a damped system. The third section
presents the numerical stability of the proposed method for the eigenvalue
problem with distinct eigenvalues, and the next section presents numerical
examples.

2. SENSITIVITY ANALYSIS OF DAMPED SYSTEMS

The equation of motion of a damped system can be expressed as

M�y�t� � C�y�t� � Ky�t� � f�t�, �1�
where M, C and K are the matrices of mass, damping and stiffness, respectively,
and these are order n symmetric matrices. M is positive de®nite and K is positive
de®nite or semi-positive de®nite. f is the excitation vector and y is the response
vector. The solution of the free vibration of equation (1) can be assumed as

y�t� � eltf: �2�
Substituting equation (2) into equation (1) gives

�l2M� lC� K�f � 0, �3�
where l and f are the eigenvalue and eigenvector and both are complex values
in general. To determine eigenvalues and eigenvectors, one can use the following
identity

M _y�t� ÿM _y�t� � 0: �4�
Combining equation (3) and equation (4), the 2n-dimensional eigenvalue
problem can be obtained as

ÿK 0
0 M

� �
f
lf

� �
� l

C M
M 0

� �
f
lf

� �
, �5�

which can be written conveniently as

Az � lBz, �6�
where

A � ÿK 0
0 M

� �
, B � C M

M 0

� �
and z � f

lf

� �
: �7�

Note that (2n)6(2n) matrices A and B are symmetric, but not positive de®nite.
The eigenvalues and eigenvectors of the complex eigenvalue problem Az� lBz
can be found as shown in references [30±32]. The eigenvalues are li and �lj , and
the corresponding eigenvectors are
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zj � fj

ljfj

� �
and �zj

�fj

�lj�fj

( )
for j � 1, 2, . . . , n: �8�

One can normalize the eigenvectors such as

zTj Azj �
fj

ljfj

� �T ÿK 0
0 M

� �
fj

ljfj

� �
� lj, �9�

zTj Bzj �
fj

ljfj

� �T ÿK 0
0 M

� �
fj

ljfj

� �
� 1: �10�

Suppose that eigenpairs and matrices @K/@p, @M/@p and @C/@p are known
where p is a design parameter and all eigenvalues are different, we will present
the analysis method for calculating the derivative of eigenvalues and eigenvectors
in the rest of this section.
Reconsidering the eigenvalue problem equation (3) for the jth eigenmode,

�l2jM� ljC� K�fj � 0: �11�
To obtain an equation for derivatives of eigenvalue and eigenvector, equation
(11) is differentiated with respect to a design parameter p, then

�l2jM� ljC� K� @fj

@p
� ÿ�2ljM� C�fj

@lj
@p
ÿ l2j

@M

@p
� lj

@C

@p
� @K
@p

� �
fj: �12�

Premultiplying at each side of equation (12) by fT
j , the eigenvalue derivative can

be obtained as

@lj
@p
� ÿfT

j l2j
@M

@p
� lj

@C

@p
� @K
@p

� �
fj: �13�

The above equation gives the derivative of the eigenvalue, directly, and now the
right side of equation (12) is all known but the eigenvector derivative @fj/@p
cannot be found directly since the matrix lTj M� liC�K is singular. To
overcome this singularity problem and to ®nd the eigenvector derivative, a
number of numerical methods have been developed by many researchers: the
iterative method [6±9], the algebraic method [6, 22, 23], Nelson's method [21],
and the modal method family [10±20]. In this paper the algebraic method for
calculating the eigenpair derivatives worked by Lee and Jung [22] is extended for
the proportionally and non-proportionally damped systems with distinct
eigenvalues and its numerical stability is proved.
The proposed method solves a symmetric linear algebraic equation with side

conditions given by differentiating orthonormal conditions. Rewriting the
orthonormal condition, equation (10), and arranging it gives

ft
j�2ljM� C�fj � 1: �14�

Differentiating the normalization condition, equation (14), with respect to the



DAMPED SYSTEMS: PART I 403

design parameter gives

fT
j �2ljM� C� @fj

@p
� 1

2
fT
j 2

@lj
@p

M� lj
@M

@p

� �
� @C
@p

� �
fj � 0: �15�

Equations (12) and (15) may be written as a single matrix equation as

l2jM� ljC� K �2ljM� C�fj

fT
j �2ljM� C� 0

" # @fj

@p

0

8<:
9=;

�
ÿ�2ljM� C�fj

@lj
@p
ÿ l2j

@M

@p
� li

@C

@p
� @K
@p

� �
fj

ÿ 1

2
fT
j 2

@lj
@p

M� lj
@M

@p

� �
� @C
@p

� �
fj

8>>><>>>:
9>>>=>>>;: �16�

Equation (16) is the key idea of the proposed method and the derivative of
eigenvector, @fi/@p, can be found directly by solving the algebraic equation. The
coef®cient matrix on the left side of equation (16) can be decomposed (by means
of the LDLT decomposition method [29]; L is a lower triangular matrix, and D a
diagonal matrix) into upper and lower triangular forms and a forward and
backward substitution scheme may be used to evaluate the components of
@fi/@p.
The procedure of the proposed method in the case of distinct eigenvalues is

summarized in Table 1. One can see that the algorithm of the proposed method
is very simple and compact. The proposed method has the desirable properties of
preserving the band and symmetry of all matrices, and of requiring knowledge of

TABLE 1

The procedure of the proposed method in the case of distinct eigenvalues

�1� Calculate @li
@p
� ÿfT

j l2j
@M

@p
� lj

@C

@p
� @K
@p

� �
fj:

�2� Define A� �
l2jM� ljC� K �2ljM� C�fj

fT
j �2ljM� C� 0

" #
:

�3� Compute fj �
ÿ�2ljM� C�fj

@lj
@p
ÿ l2j

@M

@p
� lj

@C

@p
� @K
@p

� �
fj

ÿ0�5fT
j 2

@lj
@p

M� lj
@M

@p

� �
� @C
@p

� �
fj

8>><>>:
9>>=>>;:

�4� Compute

@fj

@p

0

8<:
9=; � �A��ÿ1fj �using LDLT decomposition factorization�:
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only one eigenpair to be differentiated. Both properties are important in realistic
structural problems where the stiffness and mass matrices are of very high-order,
since these properties allow the use of ef®cient storage and solution techniques.
The numerical stability of the proposed method in the case of distinct natural
frequencies is proved in section 3.

3. NUMERICAL STABILITY OF THE PROPOSED METHOD

To show that the coef®cient matrix A* is always non-singular, consider
another matrix such as YTA*Y where Y is a nonsingular square matrix of order
(n� 1). The determinant property, det(YTA*Y)� det(YT)det(A*)det(Y), provides
that det(YTA*Y) 6� 0 if and only if det(A*) 6� 0 and det(Y) 6� 0. Therefore, if it is
proved that the determinant of YTA*Y is non-zero, then the determinant of
matrix A* may also be non-zero and A* is non-singular.
In this paper, the matrix Y is assumed as

Y � CCC 0
0 1

� �
, �17�

where C is a n6n matrix having arbitrary independent vectors containing the jth
eigenvector of the system as its columns, as follows:

CCC � �c1 c2 . . . cnÿ1 fj�, �18�
where c's are arbitrary independent vectors chosen to be independent of fj .
Considering equations (17) and (18), it is clear that the columns of the matrix Y
are all independent vectors. The matrix Y is non-singular and invertible since it
is a set of (n� 1) independent vectors. Pre- and post-multiplying YT and Y to A*
yields

YTA�Y � CCC 0

0 1

� �T l2jM� ljC� K �2ljM� C�fj
- - - - - - - - - - - - - - - - - - - - - -

fT
j �2ljM� C� 0

24 35 CCC 0

0 1

� �

�
CCCT�l2jM� ljC� K�CCC CCCT�2ljM� C�fj
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

fT
j �2ljM� C�CCC 0

24 35: �19�

It is obvious that the last column and row of the matrix CCCT(l2jM� ljC�K)CCC
all have zero elements since (l2jM� ljC�K)fj . That is,

CCCT�l2mM� ljC� K�CCC � ~A 0
0 0

� �
, �20�

where ~A is a non-zero (nÿ 1)6(nÿ 1) submatrix. The assumption that li is a
distinct eigenvalue of the system provides that the matrices l2iM� ljC�K and
CCCT(l2jM� ljC�K)CCC of order n have a rank of nÿ 1 and they are singular. But
~A has a full rank and it is a non-singular matrix, which is given by eliminating
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the last column and row having all zero elements from CCCT(l2jM� ljC�K)CCC.
Therefore, the determinant of ~A is non-zero, det(~A) 6� 0.
By the normalization condition, the last elements of the column vector

CCCT(2ljM�C)fj and row vector fT
j (2ljM�C)CCC are unity.

CCCT�2ljM� C�fj �
~b
1

� �
and fT

j �2ljM� C�CCC � ~b
1

� �
, �21�

where ~b is a non-zero vector. Substituting equations (20) and (21) into equation
(19) yields

YTA�Y �
~A 0 ~b
0 0 1
~b
T

1 0

24 35: �22�

Applying the determinant property of partitioned matrices, the determinant of
YTA*Y can be written as follows:

det�YTA�Y� � det
0 1
1 0

� �
det ~Aÿ �0 ~b� 0 1

1 0

� �ÿ1
0
~b
T

� � !
�23�

or

det�YTA�Y� � det�~A� 6� 0: �24�
The determinant of A* thus is not equal to zero because det(YTA*Y) 6� 0. The
non-singularity of the matrix A* is shown analytically; the numerical stability of
the proposed method in the case of distinct natural frequencies is established.

4. NUMERICAL EXAMPLE

To verify the proposed method and its possibilities, two numerical examples
are presented. In the ®rst, as an example of a damped system with proportional
damping, a cantilever plate is considered, while in the second a half-car modelled
7-DOF is considered to demonstrate an application of the proposed method to a
non-proportionally damped system with distinct natural frequencies.

4.1. CANTILEVER PLATE (PROPORTIONALLY DAMPED SYSTEM)

The ®nite element model of the cantilever plate used in reference [9] is
modelled with 36 triangular elements as shown in Figure 1. Each node of the
element has three degrees of freedom (z-translation, x-rotation and y-rotation);
hence each element has nine degrees of freedom. The number of nodes is 28 and
the total degrees of freedom of the structure is 72. For example calculations,
Young's modulus is 10�56105 N/m2, the mass density 5�88610±3 kg/m2 and the
Poison's ratio 0�3. The length of the plate is 6 m, width 3 m and thickness
0�01 m.
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Assume that the damping matrix is a linear combination of the stiffness and
mass matrices as

C � aK� bM �25�

where a and b are the Rayleigh coef®cients and a� b� 0�01. The design
parameter is the plate thickness t. The stiffness and mass matrices of the
structure are proportional to t3 and t, respectively. The derivatives of the
stiffness and mass matrices can be immediately obtained by differentiating them
with respect to plate thickness t, and the derivative of the damping matrix by
combining them.
Some sensitivity results are represented in Table 2. The lowest 20 natural

frequencies and their derivatives of the initial cantilever plate are listed in the
second and third columns of Table 2. The fourth and ®fth columns represent
actual natural frequencies and approximated natural frequencies of a changed
system of which the thickness is thicker than the initial plate and the ratio of
thickness change to initial thickness is Dt/t� 0�01. The approximated frequencies
or eigenvalues, �lchanged , are computed by

�lchanged � linitial � @l
@t

Dt, �26�

and the approximated eigenvectors can be computed in the same way. The
variations of exact natural frequencies and eigenvectors, which are calculated by
jlinitialÿ lchangedj/jlinitialj and jjfinitialÿfchangedjj2/jjfinitialjj2 respectively, are shown
in the next two columns. The last two columns are errors of approximations
calculated by jlchangedÿ �lchangedj/jlchangedj and jjfchangedÿ �fchangedjj2/jjfchangedjj2 ,
respectively. Considering the amount of variations of the eigenpair between
initial and changed system, the errors of approximated eigenpair computed by
using derivatives of the eigenpair given by the proposed method are relatively
quite small. Hence, one can say that the proposed method gives very good
results.

6 m

3 m

t

z

x

y

Figure 1. Cantilever plate with the thickness t as the design parameter. Number of nodes: 28;
number of elements: 36; number of degrees of freedom: 72; Young's modulus: E� 10�56105

N/m2; mass density: r� 5�88610±3 kg/m3.
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4.2. 7-DOF HALF-CAR MODEL (NON-PROPORTIONALLV DAMPED SYSTEM)

A simple model of a truck used in reference [28] is considered in this second
example problem for the non-proportionally damped system and is shown in
Figure 2. The truck is modelled as the lumped system with 7-DOF. Only the
vibrations in the vertical plane are considered; all the horizontal, rolling and
yawing degrees of freedom are suppressed. The components of the mass matrix
M of the system mij's are

m11 � m1; m22 � m2; m33 � m3; m44 � m4; m55 � m5; m66 � m6;

m77 � m5; and mij � 0, if i 6� j:

The components of the stiffness matrix kij's are given as

k11 � k0 � k1; k14 � ÿk1; k15 � k1z4; k12 � k13 � k16 � k17 � 0;

k22 � k0 � 1
4k2; k23 � 1

4k2; k24 � ÿ1
2k2; k25 � ÿ1

2k2�Lÿ z4�;
k26 � k27 � 0; k33 � k0 � 1

4k2; k34 � ÿ1
2k2; k33 � ÿ1

2k2�Lÿ z4�;

k36 � k37 � 0; k44 � k1 � k2 � 5k3; k45 � ÿk1z4 � k2�Lÿ z4� �
X5
t�1
�z�1 ÿ z4�k3;

k46 � ÿ5k3; k47 � ÿ2k3
X5
i�1
�z�i ÿ z5�

" #
;

k55 � k1z
2
4 � k2�Lÿ z4�2 �

X5
i�1
�z�i ÿ z1�2k3

" #
;

k56 � ÿk3
X5
i�1
�z�i ÿ z4�

" #
; k57 � ÿk3

X5
i�1
�z�i ÿ z4��z�i ÿ z5�

" #
; k66 � 5k3;

k67 � k3
X5
i�1
�z�i ÿ z5�

" #
; k77 � k3

X5
i�1
�z�i ÿ z5�2 and kij ÿ kij:

The damping matrix C has an analogous form to the stiffness matrix: e.g.,

c11 � c0 � c1; c14 � ÿc1; c15 � c1z4; c12 � c13 � c16 � c17 � 0;

c22 � c0 � 1
4c2, etc:

The design parameter selected in this example is m5 which is mass of the
container.
Some sensitivity results of the 7-DOF half car model are represented in Table

3. The lowest 14 natural frequencies and their derivatives of the initial cantilever
plate are listed in the second and third columns of Table 3. The fourth and ®fth
columns of the table represent actual natural frequencies and approximated
natural frequencies of a changed system of which the mass of the container is
more massive than that of the initial model and the ratio of mass change to
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initial mass is Dm5/m5� 0�01. The variations of exact natural frequencies and
eigenvectors are shown in the next two columns. The last two columns are errors
of approximations. Considering the variations of the eigenpair between the
initial and the changed system, the errors of the approximated eigenpair
computed by using derivatives of the eigenpair given by the proposed sensitivity
analysis method are relatively quite small. Thus, one can say that the proposed
method gives very good results.
The theory of the proposed method and its possibilities are demonstrated

through the examples. The proposed method can be applied very well to both
the proportionally and non-proportionally damped systems.

5. CONCLUSIONS

This paper proposes an ef®cient numerical method whose stability is proved
for calculation of the derivatives of natural frequencies and the corresponding
mode shapes of the structural and mechanical damped system with distinct
natural frequencies. The proposed method can ®nd the derivatives of eigenvalues
and eigenvectors in both proportionally and non-proportionally damped
systems. The method has the desirable properties of preserving the band and
symmetry of the system matrices and of requiring knowledge of only one
eigenpair to be differentiated. The algorithm of the method can be added easily
to the commercial FEM code because its numerical stability is guaranteed and
gives exact solutions.

��
���

��
��
��

c3
k3

ll

y4

z4

z5

L

k1

k0

m1 y1
c0

c1

y5

5
zi

m2 y2

k0

k2
c2

y3

k0
c0

m3

c0

m4, J4

m5, J5

4

Figure 2. 7-DOF half-car model as a non-proportionally damped system. z�1� 1�8 m, z�2� 2�3 m,
z�3� 3�8 m, z�4� 4�3 m, z�5� 5�0 m, z4� 2�0 m, z5� 3�0 m, L� 3�5, l� 0�85 m, m1� 75 kg,
m2�m3� 80 kg, m4� 3500 kg, m5� 1800 kg, c0� 120 Ns/m, c1� 150 Ns/m, c2� 50 Ns/m,
c3� 80 Ns/m, k0� 12 000 N/m, k1� 14 000 N/m, k2� 9500 N/m, k3� 4000 N/m.
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